Monitoring Complex Formation by Relaxation‐Induced Pulse Electron Paramagnetic Resonance Distance Measurements

نویسندگان

  • Angeliki Giannoulis
  • Maria Oranges
  • Bela E Bode
چکیده

Biomolecular complexes are often multimers fueling the demand for methods that allow unraveling their composition and geometric arrangement. Pulse electron paramagnetic resonance (EPR) spectroscopy is increasingly applied for retrieving geometric information on the nanometer scale. The emerging RIDME (relaxation-induced dipolar modulation enhancement) technique offers improved sensitivity in distance experiments involving metal centers (e.g. on metalloproteins or proteins labelled with metal ions). Here, a mixture of a spin labelled ligand with increasing amounts of paramagnetic CuII ions allowed accurate quantification of ligand-metal binding in the model complex formed. The distance measurement was highly accurate and critical aspects for identifying multimerization could be identified. The potential to quantify binding in addition to the high-precision distance measurement will further increase the scope of EPR applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIDME distance measurements using Gd(iii) tags with a narrow central transition.

Methods based on pulse electron paramagnetic resonance allow measurement of the electron-electron dipolar coupling between two spin labels. Here we compare the most popular technique, Double Electron-Electron Resonance (DEER or PELDOR), with the dead-time free 5-pulse Relaxation-Induced Dipolar Modulation Enhancement (RIDME) method for Gd(iii)-Gd(iii) distance measurements at W-band (94.9 GHz, ...

متن کامل

Pulse EPR Measurements of Intramolecular Distances in a TOPP-Labeled Transmembrane Peptide in Lipids.

We present the performance of nanometer-range pulse electron paramagnetic resonance distance measurements (pulsed electron-electron double resonance/double electron-electron resonance, PELDOR/DEER) on a transmembrane WALP24 peptide labeled with the semirigid unnatural amino acid 4-(3,3,5,5-tetra-methyl-2,6-dioxo-4-oxylpiperazin-1-yl)-l-phenylglycine (TOPP). Distances reported by the TOPP label ...

متن کامل

Nanometer-Range Distance Measurement in a Protein Using Mn Tags

Pulse electron paramagnetic resonance measurements of long-range (nm scale) distances between spin labels site-specifically attached to biomacromolecules have proven highly effective in structural studies. The most commonly used spin labels are stable nitroxide radicals, and measurements are usually carried out at X-band frequencies (∼9.5 GHz, 0.35 T). Higher magnetic fields open new possibilit...

متن کامل

Analysis of Influenza A Virus NS1 Dimer Interfaces in Solution by Pulse EPR Distance Measurements

Pulsed electron-electron double resonance (PELDOR) is an electron paramagnetic resonance (EPR) spectroscopy technique for nanometer distance measurements between paramagnetic centers such as radicals. PELDOR has been recognized as a valuable tool to approach structural questions in biological systems. In this manuscript, we demonstrate the value of distance measurements for differentiating comp...

متن کامل

Towards Determination of Distances Between Nanoparticles and Grafted Paramagnetic Ions by NMR Relaxation

We developed an approach for determining distances between carbon nanoparticles and grafted paramagnetic ions and molecules by means of nuclear spin-lattice relaxation data. The approach was applied to copper-, cobalt- and gadolinium-grafted nanodiamonds, iron-grafted graphenes, manganese-grafted graphene oxide and activated carbon fibers that adsorb paramagnetic oxygen molecules. Our findings ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017